Skip to main content
Particle and nuclear

Particle and nuclear

Two distinct descriptions of nuclei unified for the first time

30 Oct 2024
A new description of nuclei
Hybrid model A new description of nuclei combines the quark–gluon model of particle physics with the proton–neutron description of nuclear physics. In this artist’s impression, quarks are illustrated as the smaller spheres, which are shown interacting via gluons to create nucleons. A temporary pair of correlated nucleons is highlighted in purple. (Courtesy: Institute of Nuclear Physics Polish Academy of Sciences)

In a new study, an international team of physicists has unified two distinct descriptions of atomic nuclei, taking a major step forward in our understanding of nuclear structure and strong interactions. For the first time, the particle physics perspective – where nuclei are seen as made up of quarks and gluons – has been combined with the traditional nuclear physics view that treats nuclei as collections of interacting nucleons (protons and neutrons). This innovative hybrid approach provides fresh insights into short-range correlated (SRC) nucleon pairs – which are fleeting interactions where two nucleons come exceptionally close and engage in strong interactions for mere femtoseconds. Although these interactions play a crucial role in the structure of nuclei, they have been notoriously difficult to describe theoretically.

“Nuclei (such as gold and lead) are not just a ‘bag of non-interacting protons and neutrons’,” explains Fredrick Olness at Southern Methodist University in the US, who is part of the international team. “When we put 208 protons and neutrons together to make a lead nucleus, they interact via the strong interaction force with their nearest neighbours; specifically, those neighbours within a ‘short range.’ These short-range interactions/correlations modify the composition of the nucleus and are a manifestation of the strong interaction force. An improved understanding of these correlations can provide new insights into both the properties of nuclei and the strong interaction force.”

To investigate the inner structure of atomic nuclei, physicists use parton distribution functions (PDFs). These functions describe how the momentum and energy of quarks and gluons are distributed within protons, neutrons, or entire nuclei. PDFs are typically obtained from high-energy experiments, such as those performed at particle accelerators, where nucleons or nuclei collide at close to the speed of light. By analysing the behaviour of the particles produced in these collisions, physicists can gain essential insights into their properties, revealing the complex dynamics of the strong interaction.

Traditional focus

However, traditional nuclear physics often focuses on the interactions between protons and neutrons within the nucleus, without delving into the quark and gluon structure of nucleons. Until now, these two approaches – one based on fundamental particles and the other on nuclear dynamics — remained separate. Now researchers in the US, Germany, Poland, Finland, Australia, Israel and France have bridged this gap.

The team developed a unified framework that integrates both the partonic structure of nucleons and the interactions between nucleons in atomic nuclei. This approach is particularly useful for studying SRC nucleon pairs, whose interactions have long been recognized as crucial to understanding the structure of nuclei, but they have been notoriously difficult to describe using conventional theoretical models.

By combining particle and nuclear physics descriptions, the researchers were able to derive PDFs for SRC pairs, providing a detailed understanding of how quarks and gluons behave within these pairs.

“This framework allows us to make direct relations between the quark–gluon and the proton–neutron description of nuclei,” said Olness. “Thus, for the first time, we can begin to relate the general properties of nuclei (such as ‘magic number’ nuclei – those with a specific number of protons or neutrons that make them particularly stable – or ‘mirror nuclei’ with equal numbers of protons and neutrons) to the characteristics of the quarks and gluons inside the nuclei.”

Experimental data

The researchers applied their model to experimental data from scattering experiments involving 19 different nuclei, ranging from helium-3 (with two protons and one neutron) to lead-208 (with 208 protons and neutrons). By comparing their predictions with the experimental data, they were able to refine their model and confirm its accuracy.

The results showed a remarkable agreement between the theoretical predictions and the data, particularly when it came to estimating the fraction of nucleons that form SRC pairs. In light nuclei, such as helium, nucleons rarely form SRC pairs. However, in heavier nuclei like lead, nearly half of the nucleons participate in SRC pairs, highlighting the significant role these interactions play in shaping the structure of larger nuclei.

These findings not only validate the team’s approach but also open up new avenues for research.

“We can study what other nuclear characteristics might yield modifications of the short-ranged correlated pairs ratios,” explains Olness. “This connects us to the shell model of the nucleus and other theoretical nuclear models. With the new relations provided by our framework, we can directly relate elemental quantities described by nuclear physics to the fundamental quarks and gluons as governed by the strong interaction force.”

The new model can be further tested using data from future experiments, such as those planned at the Jefferson Lab and at the Electron–Ion Collider at Brookhaven National Laboratory. These facilities will allow scientists to probe quark–gluon dynamics within nuclei with even greater precision, providing an opportunity to validate the predictions made in this study.

The research is described in Physical Review Letters.

Copyright © 2024 by IOP Publishing Ltd and individual contributors